

LA-UR-18-27512

Approved for public release; distribution is unlimited.

Title: Virtual characterization: perspectives

Author(s): Capolungo, Laurent

Intended for: Scientific presentation/discussion to be given to the LEM3 laboratory in Metz, France. The talk is planned on July 26th.

Issued: 2018-08-07

Virtual characterization: perspectives

L. Capolungo

Acknowledgement: BES E401

Outline

- Integrated modeling: discrete continuous model embedded in a Fast Fourier Transform mechanical solver
- Virtual characterization
 - Connecting with Xray Diffraction
 - Connection with TEM

A FFT based Formulation:

$$\epsilon_{ij}^{p}(\vec{x}) = -\frac{1}{2} (b_i n_j + b_j n_i) \delta(\vec{S} - \vec{x})$$

The plastic strain due to dislocation motion is treated as an eigenstrain

$$\begin{cases} \boldsymbol{\sigma}(\vec{\boldsymbol{x}}) = \boldsymbol{C}(\vec{\boldsymbol{x}}) : (\boldsymbol{\epsilon}(\vec{\boldsymbol{x}}) - \boldsymbol{\epsilon}^p(\vec{\boldsymbol{x}})) \\ \operatorname{div} \boldsymbol{\sigma}(\vec{\boldsymbol{x}}) = \vec{\boldsymbol{0}} \end{cases} \forall \vec{\boldsymbol{x}} \in V$$

The system is equilibrated and constitutively related

 $oldsymbol{\sigma}(ec{oldsymbol{x}}) = oldsymbol{C}^0: oldsymbol{\epsilon}(ec{oldsymbol{x}}) + oldsymbol{ au}(ec{oldsymbol{x}})$

The polarization tensor can include SFTS, Plasticity

 $oldsymbol{ au}(ec{oldsymbol{x}}) = oldsymbol{\delta} oldsymbol{C}(ec{oldsymbol{x}}) : oldsymbol{\epsilon}(ec{oldsymbol{x}}) - oldsymbol{C}(ec{oldsymbol{x}}) : oldsymbol{\epsilon}^p(ec{oldsymbol{x}})$

 $\delta C(\vec{x}) = C(\vec{x}) - C^0$

 $C_{ijkl}^0 u_{k,lj}(\vec{\boldsymbol{x}}) + \tau_{ij,j}(\vec{\boldsymbol{x}}) = 0$ $\forall \vec{x} \in V$

One can rewrite the constitutive relationship

One obtains the Lippmann Schwinger equation

$$egin{aligned} \widehat{m{\epsilon}}(m{ec{m{\xi}}}) &= -\widehat{m{\Gamma}}^0(m{ec{m{\xi}}}): \widehat{m{ au}}(m{ec{m{\xi}}}) \ &= -\widehat{m{\Gamma}}^0(m{ec{m{\xi}}}): \widehat{m{\delta C}: m{\epsilon}}(m{ec{m{\xi}}}) + \widehat{m{\Gamma}}^0(m{ec{m{\xi}}}): \widehat{m{C}: m{\epsilon}^p}(m{ec{m{\xi}}}) \end{aligned}$$

$$orall ec{oldsymbol{\xi}}
eq ec{oldsymbol{0}},$$

$$\widehat{m{\epsilon}}(ec{m{0}}) = m{E}$$

Which is solved in Fourier space

UNCLASSIFIED

Concurrent multi-scale

DDD (8x8x8 boxes) ----DDD (10x10x10 boxes) ----DDD (15x15x15 boxes) ----DDD (20x20x20 boxes) ----DDD-FFT (32x32x32) — DDD-FFT (64x64x64) — DDD-FFT (128x128x128) — DDD-FFT (256x256x256) -

A conjugate gradient algorithm allows for the simulations of plasticity in heterogeneous media

Convergence is reached even with 10⁵ stiffness contrasts

G_1 (Material 1)	G_2 (Material 2)
26.175 GPa	261.75 GPa

The FFT based DDD tool allows for a treatment of anisotropic elasticity

Highly computationally efficient (i.e. runs on a laptop with GPU card)

Sxz [MPa]

2.000e+00

UNCLASSIFIED

The FFT algorithm accelerates the computation of forces on segments.

- → Computational times are not very sensitive to dislocation content.
- → Heterogeneous problems can be solved (PX, SFTS)
- → Anisotropic problems have no extra cost

Discretize

Dislocations

Solve

EOM

Polycrystal simulations to large densities

On the fly diffraction peak calculations

Coupling between mechanics and chemistry (vacancy accumulation during irradiation)

Internal stress assisted cross-slip in Al-Cu

Time

Integration

Update

Positions

Revisiting the grain size effect

- Multiple copper polycrystalline samples were pulled in tension at a strain rate 10⁵ s⁻¹
- 64x64x64 point Fourier grid
- Grain sizes were varied from ~150 to 500 nm
- No grain boundary transmission

Grain boundaries are taken as impenetrable obstacles

Predicted: 0.148 MPa.m^{1/2}

Reported: 0.14 Mpa.m^{1/2}

Predicted: 14 MPa

Reported: 20 MPa

UNCLASSIFIED

Outline

- Integrated modeling: discrete continuous model embedded in a Fast Fourier Transform mechanical solver
- Virtual characterization
 - Connection with TEM
 - Connecting with Xray Diffraction

Line Profile Analysis: Wilkens approach

Scattering intensity

$$I(\vec{\kappa}) = C \sum_{j,l=2}^{N} \exp(i\vec{\kappa} (\vec{R}_{j} - \vec{R}_{l}))$$

$$I(\vec{s}) = \exp(i\pi \vec{s}\vec{n}) \frac{C}{V} \int dn^3 \int dr^3 \exp(2\pi i \vec{g} \left(u(\vec{r} + \vec{n}/2) - u(\vec{r} - \vec{n}/2) \right) \right)$$

Scattering intensity is proportional to the Fourier Transform of

$$A(\vec{n}) = \frac{1}{V} \int dr^3 \exp(2\pi i \vec{g} (u(\vec{r} + \vec{n}/2) - u(\vec{r} - \vec{n}/2)))$$

Warren Averbach relation

$$A(\vec{n}) = \exp\left(-2\pi^2 n^2 g^2 < \varepsilon_{g,n}^2 > \right)$$

Wilkens

$$<\varepsilon_{g,n}^2> = -\left(\frac{b}{2\pi}\right)^2\pi\rho f(\eta)$$

Asymmetric peaks in work of Groma et al. Effect of dislocation contrasts Ungar et al.

$$\eta = \frac{1}{2} \exp(-1/4) \frac{L}{R_e}$$

Line Profile Analysis: Wilkens approach

Restrictedly random distributions:

The crystal can be subdivided in subvolumes of equal size in which:

- -All have same dislocation densities.
- -Which have a null net dislocation polarity.
- -All dislocations are infinitely long straight and parallel
- -Within each volume the dislocation distribution is random

Warren Averbach relation

$$A(\vec{n}) = \exp\left(-2\pi^2 n^2 g^2 < \varepsilon_{g,n}^2 > \right)$$

Wilkens

$$<\varepsilon_{g,n}^2> = -\left(\frac{b}{2\pi}\right)^2\pi\rho f(\eta)$$

Asymmetric peaks in work of Groma et al. Effect of dislocation contrasts Ungar et al.

$$\eta = \frac{1}{2} \exp(-1/4) \frac{L}{R_e}$$
UNCLASSIFIED

Peak profile construction

To create representative peaks, several (i.e. 8-20) dislocation structures with same densities are generated.

Accuracy of line profile analysis as a function of dislocation density: relatively homogeneous distributions

Sample relative densities

Balogh et al. Acta Mater 2012 UNCLASSIFIE Evolution Ratio of density predicted from line profile analysis over density produced by dislocation dynamics

Accuracy of line profile analysis as a function of dislocation density: Inhomogeneous distributions

Sample relative densities

A modest departure from homogeneous distribution significantly increases the error of line profile analysis

Outline

- Integrated modeling: discrete continuous model embedded in a Fast Fourier Transform mechanical solver
- Virtual characterization
 - Connecting with Xray Diffraction
 - Connection with TEM

Numerical FIB

Initial microstructure containing a relaxed dislocation configuration

First FIB pass (~100nm) followed by relaxation.
Dislocations can exit the system

UNCLASSIFIED

Second FIB pass (~100nm) followed by relaxation.
Dislocations can exit the system

Virtual dislocation microstructure

 $\frac{PBC_{xyz}}{\Sigma_{ave}=0}$

Relaxation under local dislocation stress field

- ✓ 64x64x64 FFT grid
- ✓ Sim. Box=500nm
- ✓ Heterogeneous elasticity
- $\checkmark Mg_{@273K}$

Setup for Modelling of FIB milling

- ✓ 4 consecutive milling passes
- ✓ Different virtual dislocation microstructure

Prismatic

Basal

- ➤ PBC = Periodic boundary condition
- ightharpoonup FS = Free surface

279.

nm

UNCLASSIFIED

FIB milling Pass [01-04] – Total dislocation density

FIB milling Pass– Dislocation density on each slip system

FIB milling Pass [01-04] – Total junction density and junction length

~16.3 % increase in total junction density

Stress relaxation due to FIB (S23)

